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A brief review of the relevant papers and an examination of the current status of 
research in the field of the acoustics of gas-particle suspensions are given. Non- 
stationary momentum, mass and energy transfer processes between a gas (vapour) 
and dispersed particles (droplets) under high-frequency acoustic perturbations are 
considered. A comparative evaluation of characteristic times and temperature 
differences for gas-particle and vapour-droplet mixtures subjected to acoustic 
perturbation is given. General dispersion equations to describe the propagation of 
weak monochromatic waves for a wide range of frequencies complying with the 
requirements of the acoustic homogeneity of the medium are derived. Frequency 
dependences of propagation velocity and attenuation coefficient of weak waves in 
water vapour-droplet mixtures are investigated. Frequency ranges are indicated 
over which different types of approximate theories are valid. 

1. Introduction 
The effect of suspended particles on the propagation of sound in a gas was 

discussed by Sewell (1910) who was probably the first to investigate the attenuation 
of audible sound in fogs. Sewell derived a formula for calculating the absorption of 
sound at  different frequencies due to interfacial drag forces and scattering of waves 
by droplets. He assumed droplets to be immovable rigid particles and neglected the 
heat and mass transfer between them and a gas. 

Sewell’s formula ignores a number of real effects and dissipative mechanisms. 
One of its imperfections was already clear to Lamb (1945) who pointed out that 
the absorption coefficient of Sewell tends to zero under reducing droplet size (the 
corollary of assuming droplets to be frozen in the wave). Having allowed for the 
motion of particles, Lamb obtained a more general formula for the coefficient of 
attenuation. 

Rytov, Vladimirsky & Galanin (1938) analysed the propagation of perturbations 
in barotropic systems, taking into account only the non-stationary effects of 
interfacial force interaction. Similar results were obtained in the same period by 
Viglin (1938) and Oswatititsch (1941), who studied the effect of non-equilibrium 
phase transitions on the propagation of sound in one-component two-phase 
vapour-droplets mixture (wet steam). However, Viglin and Oswatititsch used the 
very strong simplifying assumptions of equal velocities and temperatures of the 
phases in the wave. The effect of non-stationary heat, transfer between phascs on 
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the attenuation of acoustic waves in two-phase mixtures seems to have been 
discussed first by Isakovich (1948). 

A more detailed survey of the above-mentioned work, and some other papers 
published prior to 1960, can be found in the monographs of Bergmann (1954) and 
Richardson (1962). Some aspects of the state of the field have been discussed in 
various reviews and monographs (Landau & Lifshitz 1954; Puks 1955; So0 1967; 
Deich & Filippov 1968; Isakovich 1973). 

The propagation of small perturbations has been given the most attention. Epstein 
& Carhart (1953), Kleiman (1958, 1961), Zink & Delsasso (l958), So0 (1960), Chow 
(1964), Temkin & Dobbins (1966a), Popov (1968, 1970), Mori, Hijikata & Kamada 
(1971) studied the speed and attenuation of sound in a gas carrying small particles 
of a solid inert phase, in the absence of phase transformations. These authors took 
into account the effects of heat transfer between phases ; however they ignored the 
non-stationary effects of interfacial interactions. An attempt to cover these effects 
for the ultrasonic range of frequencies was made by Popov (1970). So0 (1960) 
discussed peculiarities in propagation through smoke-type polydisperse aerosols with 
low mass concentration of the condensed phase. 

A number of papers have treated the dispersion and absorption of weak 
perturbations in vapour- and gas-droplet mixtures under phase transformations 
(Stadtke 1968 ; Ivandaev & Nigmatulin 1970; Ivandaev 1978 ; Gumerov, Ivandaev 
& Nigmatulin 1983). 

Dispersion and attenuation of low-frequency acoustic perturbations in vapour and 
vapour-gas fogs a t  low mass concentrations m of the condensed phase (m + 1) were 
studied by Cole & Dobbins (1970), Marble (1970), Marble & Wooten (1970), 
Davidsion (1975b), Rosenfeld (1983). It was shown that in this case a maximum of 
attenuation per wavelength is observed at dimensionless frequencies WT, - m, i.e. at 
WT, + 1 (where w is the circular frequency and 7, is the Stokes relaxation time 
between gas and particle velocities). 

I n  a number of papers the propagation of weak perturbations in heterogeneous 
media has been studied, taking into account some additional factors such as the 
initial non-uniformity of the medium, radiation and some other physico-chemical 
factors (Stasenko 1973; Lymon & Chen 1978; Meyer zur Cappelen 1981). Attenuation 
of the acoustic wave in a non-uniform medium with temperature and density 
gradients in the direction of the wave propagation can be greatly different from that 
in the corresponding uniform system (Lymon & Chen 1978). 

The attenuation of weak discontinuities in gas-particle mixtures for planar, 
cylindrical and spherical symmetries of flow has been studied by Bhutani & 
Chandran (1977). 

In  a series of recently published papers the propagation of weak shock waves in 
gas-particle mixtures has been studied (Rochelle & Peddieson 1976 ; Rasmussen 
1977; Kikaien, Peddieson & Au 1983). 

Much attention has been paid to the study of weak nonlinear perturbations in a gas 
with particles. The starting system of differential equations in some simplified 
variant can be reduced to only one Burgers-type equation. Quite a few papers aim 
a t  deriving such an equation since its main properties are relatively well known 
(Davidson & Scott 1973; Davidson 1975a, 1976; Borisov, Vakhgelt & Nakoryakov 
1980, 1981 ; Tarakanov & Todes 1982). Some authors have studied the propagation 
of finite-amplitude rarefaction and compression waves in gas-particle mixtures by 
the method of characteristics (Yamamoto, Kobayashi & Takano 1980). 
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The abovc-mentioned papers treat thc propagation of perturbations in sufficiently 
dilute gas-particle mixtures for the effects of direct interaction between particles of 
the dispersed phase to be negligible. Among the others dealing with wave propagation 
in concentrated suspensions we can single out the recently published articles of 
Buevich & Fedotov (1980) and Ryzhkov & Tolmachev (1983). 

The work of Altberg & Holzman (1925), who measured the attenuation of acoustic 
vibrations with frequencies from 0.5 to 2 kHz in smoke-type aerosols, appears to be 
among the earliest experimental studies of sound in gas-particle mixtures. The 
qualitative data on sound attenuation reported by Knudsen (1931), were probably 
the first for humid air. 

Experimental data on the absorption of sound a t  42,98 and 659 kHz in smokes of 
stearic acid and magnesium oxide, as well as in an aerosuspension of monodisperse 
lycopodium powder of 5 pm particle size, were obtained by Laidler &, Richardson 
(1938). Knudsen, Willson & Anderson (1948) reported data on the attenuation of 
low-frequency sound a t  500 Hz in a polydisperse fog generated by atomizing water 
in the air. In  all these experiments only the absorption of acoustic waves was 
measured ; the speed of sound was not studied. 

The first measurements of the attenuation and dispersion of acoustic vibrations in 
gas-particle mixtures were carried out by Zink & Uelsasso (1958). They worked with 
polydisperse suspensions of spherical A1,0, particles in gases with different thermal 
properties: hydrogen, oxygen, helium and argon. Particle diameter was from 5 to 
15 pm, and frequency was varied from 0.5 to 13.6 kHz. The corresponding values of 
dimensionless frequency w7, in these experiments exceeded unity. 

Data on dispersion and attenuation of sound in a mixture of oleic acid droplets and 
a nitrogen carrier gas a t  dimensionless frequency WT, - 1 can be found in Dobbins & 
Temkin (1964) and Temkin & Dobbins (1966b). The experiments were carried out for 
mass concentrations of droplets from to 2 x lo-', and the frequency was varied 
from 1 to 9.5 kHz. The mean droplet diameter varied in different experiments from 
0.8 to 4.7 pm. The mass concentration and droplet diameters were measured 
optically. It was shown that the maximum of sound attenuation per wavelength is 
achieved when WT, - 1. 

Cole & Dobbins (1971) reported some interesting results on the speed and 
attenuation of sound in air fog. The fog was generated in a Wilson cloud chamber. 
Experiments were carried out for the range of droplet diameters from 2 to 10 pm a t  
80 Hz and mass concentration of the liquid phase m - lo-'. The maximum of 
attenuation per wavelength was observed not a t  WT, - 1, as in the case of a 
gas-particle mixture. but a t  WT, - m. 

Most experiments have been conducted with sound propagation through 
polydisperse suspensions, with practically no information on the particle size 
distribution functions. Even in the most careful experimental studies (Cole & 
Dobbins 1971; Temkin &, Dobbins 1966b) only two parameters were measured 
directly : a certain ' rolume-to-surface ' mean diameter of particles and their mass 
concentration in the mixture. That is why it is quite difficult to compare a theory 
with the experiments. 

No systematic experimental data have been reported in the literature on the speed 
and attenuation of sound in systems with different thermal properties of the phases. 
Very limited data are available to analyse the effect of phase transformations on the 
shape of dispersion curves. Nothing is known of attenuation at  high frequencies, 
when the non-stationary effects of interaction between phases are significant. It 
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would be of considerable theoretical and practical interest if data of this kind were 
obtained for mono- and polydisperse systems with a known particle size distribution 
function. 

2. General linearized equations and the laws of interaction between phases 
in high-frequency acoustic fields 

If finely dispersed particles or droplets of a solid or liquid substance are uniformly 
distributed in a carrying gas or vapour, and the wavelength of sound is much greater 
than the size of the particles and interparticle distances, the vapour- or gas-particle 
mixture is an acoustically homogeneous continuum. Propagation of small per- 
turbations in such a medium can be described by linearized conservation equations 
of masses, momenta and energies of the phases. They follow from the general 
nonlinear equations of motion for two-phase mixtures of dispersed structure (see 
Nigmatulin 1978, 1979). 

2 .1 .  Linearized equations of motion and state 

Linearized conservation equations of mass, momentum and energy for the planar 
one-dimensional motion of a dilute mixture in a reference frame where an initially 
equilibrium heterogeneous mixture is a t  rest (ulo = uzo = uo = 0) can be written in 
the form (see Ivandaev 1978) 

Here ( 1 )  are the mass and momentum conservation equations of the continuous 
(subscript 1 )  and the dispersed (subscript 2 )  phases, and ( 2 )  are the equations of heat 
influx to gas (vapour), particles (droplets) and the surface of an individual droplet. 
The symbols p, po, a. u, P and i denote, respectively, mean and true densities, volume 
fraction, velocity, internal energy and enthalpy; p is a pressure, a and n are the 
radius of particles and their number density, 1 is the latent heat of evaporation. The 
letters f, j and q?,, denote, respectively, the force applied by the gas to a droplet ; the 
rate of condensation a t  the surface of an individual droplet ; and the heat flux from 
thej th  phase ( j  = 1 , 2 )  to the surface of a droplet (subscript r). Subscript 0 refers to 
thc initial undisturbed state. Here we limit the analysis to a study of the initially 
uniform state of the mixture along the x-coordinate, i.e. plo, pt0, no, azo, a,, p ,  are each 
constant. 

The equations of state of a calorically perfect gas and an incompressible dispersed 
phase take, after linearization, the forms 

9 = @+-, dT1 di, = cidTl (cl = const), 
Po P?O To (3) 

dpi = 0, de, = czd5’\ (c, = const), 1 
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where T is the temperature, and c, and c, are the specific heats of the gaseous (at  
constant pressure) and condensed phases. 

To avoid confusion we shall drop the subscript 0 everywhere below. 
Let us study the solutions of the system of linear equations (1)-(3), which have the 

form of travelling waves for perturbations dx = dp,, duj, dp, . . . : 

dx - exp{i(k,x-wwt)} = exp(-k,,x) exp{i(kx-wt)}] 

w .  dw 
k '  dk '  w 

k , =  ki-ik,,, C = -  c =- g =  
(4) 

where i2 = -1 ,  k ,  is the complex wavenumber, k , ,  is the linear attenuation 
coefficient; C,, C, and u denote the phase velocity, group velocity and absorption 
coefficient per wavelength. 

Note that although (1) and ( 2 )  are formally justifiable only when the wavelength 
L, = 27cC,/w is much greater than the characteristic distance between the particles 
d = aa;i (i.e. at frequencies w + w,, where w, = 2 x C p / d ) ,  in practice the equations are 
valid a t  frequencies w < w c ,  where wc = nC,/a. For waves with L, % a a gas-particle 
mixture may be considered as an acoustically homogeneous medium. 

2.2. Non-stationary e#'ects in interfacial momentum transfer 

The total force acting on a spherical particle due to unsteady gas motion around it 
can be written as a sum of the four forces (see, for example, Nigmatulin 1978) 

Here f ,  is the quasi-stationary viscous drag force (the Stokes force at low Reynolds 
numbers Re,, of the relative motion), f A  the buoyancy force, f m  the virtual mass force 
and fB the Basset force due to the non-stationarity of the viscous boundary layer 
about the particle. In  the case of weak perturbations, the formulae for these forces 
are 

Note that the momentum conservation equations of the phases (see (1 ) )  can be 
written in the equivalent form 

aP x- nlo(f;, + f B  + f m )  3 

au, 
at P10- = --a10 

au aP 
p z o L  at = --a 20 x + ( f p  +f B + f m  % O ( f A  + f p  + f B  + f m  ),  

Sometimes the term 
aP 

- % 0 ~  n o f A  n O ( f p + f B + f m )  

is called the 'buoyancy' force. 
The solution of a wave dynamics problem for gas-particle mixtures becomes 

substantially more complicated if the Basset force is used to describe the motion 
history effect on the behaviour of dispersed particles. Difficulties are alleviated at 
high Re,, (e.g. in shock waves) because in this case the non-stationary effects of the 
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interfacial force and thermal interaction (and especially Basset-type memory effects) 
are negligible. 

At low Re,,, non-stationary effects often cannot be ignored. A typical case in which 
they must be taken into account is the weak monochromatic perturbation 
propagation problem. In this case the unknown functions are complex exponentials 
of coordinates and time (4), and the Basset force integral can be calculated as 

(7 )  fB = 3 . \ /2xa2(1 -i) (pyp,w)t (u1-u2). 

For the forces fA and f, we have, respectively, 

fA = - iw$na3py ul, f, = - iw$na3p~(u, -uz). (8) 

We note that the forces fA and fm are of the same order of magnitude. 

oscillations being displaced in phase : 
The f, to f,, fB to  fp, and fm to fB ratios are frequency-dependent, the relevant 

Here is the typical 'thickness' of the viscous boundary layer about a droplet (the 
'penetration depth ' of velocity perturbation into the gas over the characteristic time 
of oscillations T = u-l), and rpl denotes the characteristic time over which a quasi- 
stationary, or Stokes, velocity field builds up in the gas around a particle. 

The total force of interfacial interaction f is actually the Stokes viscous drag force 
only a t  sufficiently low frequencies, w < lo-%;:. At these frequencies it is 
independent of frequency, because velocity perturbations penetrate (due to viscosity) 
into the gas over the characteristic time of oscillations to a distance much greater 
than the droplet size (S,, + a ) .  At the same time the droplet size is much greater than 
the mean free path of molecules L in the continuous phase, 

a + L - Pl / (P;Cl )>  

where C ,  is the speed of sound in the gaseous phase (for saturated steam a t  p = 1.0 
MYa we have C, - 500 m/s and L - lo-' m). So, 

where wc is the frequency limit. 
There is, therefore, a wide range of high frequencies, 

10-2r;t 4 w 4 wc,  

in which forces fB,  f, and fA due to the non-stationarity of the gas flow around 
droplets, are comparable with the quasi-steady drag force AL, or even substantially 
exceed it. However, the gas-particle mixture can still be treated as a continuum, and 
the wave processes in it may be described by continuum equations. 

As an example, figure 1 shows different ranges of frequency and droplet radius a ,  
over which, in accordance with estimates, different components of the total 
interaction force predominate ; in particular the ranges over which the quasi- 
stationary force Ji, viscosity forces (AL, fs) and inertial forces ( fm,fA) are dominant. 



Sound waves in gasparticle mixtures 59 

100 10' lo2 

a (w) 
FIGCRE 1. A diagram illustrating possible regimes of force interaction between vapour and droplets 
of various radii a under an acoustic field with frequency w .  I n  the regions marked 1-6 the following 
forces dominate : 1, f, (phases are in velocity equilibrium owing to f', u1 = u2) ; 2, f' (ul + u2) ; 3, 
f@ + f B  ; 4, f f i + f B  + f m  + f A  ' 5 ,  f B  ' f m  + f A  ; 6, f m  'f.4' 

The solid and dashed lines trace the above-described characteristic frequencies wc 
and r;;, and the dash-dotted line traces the frequency w, = 7i1 (see (11)). The 
computations are carried out for a saturated mixture of water vapour and droplets 
a t  p = 1.0 MPa. 

The expression for the main part of the interfacial force depending upon the 
relative velocity of the phases uI2 = u1-u2 can be written in the form 

fpBm = f p + f B  + f m  = K*u,,, 

Here K* is a frequency-dependent complex drag coefficient which characterizes the 
interfacial momentum transfer under the unsteady laminar flow around a particle. 
The fact that K* is complex indicates that there is a phase shift between oscillations 
of the force f p B m  and those of the slip velocity u12. The interfacial force is 
determined by the absoslute value K = lK*I, the phase shift by the principal value 
of the argument 3, = largK*I. 

Figure 2 illustrates how K and 9, depend on w .  Clearly, the drag coefficient strongly 
depends on frequency; a t  dimensionless frequencies wrPl > 100 it  is at least an order 
of magnitude greater than the ordinary Stokes drag coefficient K p .  The effect of 
virtual mass on K* becomes appreciable a t  frequencies wrpl  2 1, and grows to be 
comparable with the Basset effect a t  ~7~~ - 100. The phase shift y increases with 
increasing frequency, and q+in as w +  CO. (This limit is a result of virtual mass 
effects, since the Basset memory effect gives q ~ + $  as w + CO.) 

1 FLM 193 
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FIGURE 2. Dimensionless drag coefficient K / K ,  (solid curves) and phase shift p between the 
oscillations of force and slip velocity (dashed curves) as functions of frequency. The lower thin 
curves plot the corresponding functions when only the Basset effect is taken into account. 

Let us introduce a complex relaxation time for momentum transfer between 
phases under acoustic perturbations. With that end in view, the momentum 
equation of the dispersed phase may be written in the form 

Here 7, is the ordinary dynamic relaxation time under steady Stokes flow of gas 
around a particle; T,* is its complex analogue; TII;  denotes the complex time 
characterizing the change of particle momentum due to the unsteady buoyancy 
force; K* and K,L are the drag coefficients introduced above (see (lo)). 

Note that two-velocity effects are of no importance a t  w < l0-'/rv. In  this case thc 
velocities of both phases arc practically identical (u ,  z uz),  owing to the viscous 
Stokes force (see figure 2). 

2.3. Non-stationary effects of interfacial heat and mass transfer 

The gas Prandtl number is Pr, N 1 ; therefore the characteristic time 7A1 = az/Kl of 
thc build-up of the quasi-stationary thermal field within the gas around a droplet is 
of the same order of magnitude as the characteristic time rP1. Consequently, the 
transient nature of temperature fields around particles or droplets, resulting in 
frequency dependence of the interfacial heat and mass transfer intensity, manifests 
itself at  thc same acoustic frequencies as the transient nature of velocity fields, 
resulting in the frequency dependence of the interfacial force. 

The temperature conductivity of the condensed phase K~ is usually much smaller 
than that of the gas K' ( K ~  6 K ' ) ,  hence the characterisbic time 7A2 = C L ' / K ~  of the build- 
up of the quasi-stationary (uniform) thermal field within the droplet is much greater 
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than that within the gas (rA2 9 rA1). As a result, the transient heat transfer from the 
surface of the droplet to the liquid inside it, leading to a frequency dependence of 
heat flux q2n, seems to be appreciable even a t  lower acoustic frequencies than the 
effect of transient heat transfer to the gas?. 

Within the framework of the accepted three-temperature scheme of the interfacial 
heat and mass transfer (Z), the continuous distribution of microtemperatures T‘ 
inside and o:itside each individual droplet is replaced by the following step 
distribution function : 

T,, r < a ,  

T’(r) = T,, r = a ,  r TI, r > a ,  

where TI and T2 are the characteristic macrotemperatures of the gas and the droplets 
respectively, and T, is the temperature of the droplet surface. 

The true values of the heat fluxes ql, and qZu are governed by the actual frequency- 
dependent distributions of microtemperatures in the continuous and dispersed 
phases. To obtain proper relationships let us consider (in a reference frame fixed to 
the centre of a particle of the dispersed phase) the problem of heat transfer between 
a spherical particle and the gas. In  a monochromatic acoustic wave with driving 
frequency w we have 

(T;(r,t)-To), (p( t ) -p , )  - e*p(-iwt). 

The heat-influx equations for the external (outside the particle) and internal 
(inside the particle) regions in the case of the sphcrically symmetrical problem are 

I 
The boundary conditions for (12) have the form 

The solutions of these problems in the case of monochromatic waves are well- 
known ; 

where A ,  and A ,  are constants which can be determined by the boundary conditions 
at  the interface, and T, is the temperature far from the droplet. 

around a particle of radius a. Integrating the Consider a cell of radius R = 

t The more detailed analysis given below demonstrates that the transient behaviour of the 
temperature field affects the intensity of heat transfer within a droplet even a t  higher frequencies 
than in the gas outside it ,  in spite of T~~ + T ~ ~ .  

3-2 
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distributions (13) over the masses of the phases in the cell when a: 3 1, we can find 
the complex amplitudes of the mass-averaged temperatures of the phases : 

Let us take into consideration the dimensionless complex parameters of heat 
transfer Ku?, the so-called complex ' h'usselt numbers' 

where hj is the thermal conductivity of the j t h  phase ( j  = 1,2) .  
Using the temperature distributions (13), the mass-averaged temperature (14), 

and the above definitions, we may write down the following cxpressions for these 
narameters : 

The formula for Nu,*(w) is substantially more complicated than that for NuT(w), and 
it is useful to give simpler expressions for Nu,*(w) which are valid for some frequency 
ranges : 

~ u , * ( w )  x io( i  +&;z;) = 10 , 12,i4 = ( W ~ J  3 1, 

An important feature of the above low-frequency Nu:(w) asymptoties is a weak 
linear dependence of the imaginary part on o, and the constancy of the real part. The 
high-frequency asymptotics for Nu; (o )  coincide with the corresponding asymptotics 
for Nu: ( w ) ,  because thermal boundary layers a t  high frequencies arc extremely thin 
and the difference between the internal and external thermal problems disappears. 

The heat transfer coefficients Nu; are complex, and this points to a phase shift 
between the oscillations of heat fluxes and those of tempcrature differences (q -T f f ) .  
The intensities of heat fluxes are determined by the absolute values N u j  = INuj*l. 
and phase shifts by the principal values of arguments vj = IargNuTl. 

Curves plotting Nuj(w) and v j ( w )  are shown in figure 3. Clearly, as w + O ,  we have 
N u ,  + 10 while Nu, + 2. The heat transfer coefficient N u ,  is close to its stationary 
value N u ,  = 2 only if w < lO-'r,;'. As for the parameter X u 2 ,  the coefficient &, in the 
low-frequency asymptotics (16) is so small that N u ,  is practically indistinguishable 
from its quasi-stationary value Nu, = 10, even a t  w - 1 o ~ i l .  Correspondingly, a 
small phase shift cp, is observed only at  w < lW2r;;, while q ~ ,  is nearly zero even at  
w - 107;;. Kote that rA1/rA2 = K * / K ~ ,  and that in mixtures of gas--particle type this 
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FICtxF:  3. Heat  transfer parameters Nu, (Nusselt numbers) and phase shifts rp, between oscillations 
of heat fluxes and temperature differences as funct>ions of characteristic dimensionless frequencies 
(j = 1,2) .  

quantity is of order 10-1-10p2. As a result, even though rh2 % rAl ,  the ‘internal’ non- 
stationarity begins to affect the intensity of heat transfer between phases at higher 
frequencies of acoustic perturbations than the ‘external ’ one. 

Let us introduce the concept of the complex times of temperature relaxation in 
individual phases ; for this purpose it is instructive to rewrite the formulae for the 
‘external’ (ql,) and ‘internal’ (qZn) heat fluxes t,o the droplet surface in the forms 

Here rf i  is thc complex temperature relaxation time in t h e j t h  phase, determined 
by a characteristic time rhi and frequency w .  As follows from (15), ( l 6 ) ,  complex 
rclaxation times r& are close to their quasi-stationary real values at low 
frequencies, different for each individual phase, 

r;* = TT.2 = WTh‘2 < 1,  IT21 1 .  

In the case of a phase transformation at the surface of a droplet, the surface 
temperature T, is determined by the phase transformation rate. The process obeys 
the well-known Herz-Knudsen-Langmuir formula that we write in the form 
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where 7, is the ‘relaxation time’ of temperature a t  the interface, depending on the 
accommodation coefficient p and independent of frequency w ;  T, is the saturation 
temperature, which is a known function of pressure. In the case of small perturbations 
along the saturation curve, the following Clapeyron--Clausius relationship holds : 

Although the characteristic time 7, is independent of w ,  the rate of the phase 
transition j does depend on frequency w ,  because frequency affects heat fluxes q;., 
towards the interface (these fluxes account for the in- or outflow of heat absorbed or 
released in evaporation or condensation respectively). 

2.4. Comparative evaluation of characteristic times and temperature differences 
In order to compare the characteristic temperature differences TI - T,, T, -T, and 
T, - T, arising in acoustically perturbed vapour-droplet mixtures, we make use of the 
equation of heat inflow to the interface, q1,+q2, = -jl (see (2)). It yields 

Here 7?, and rz, are the characteristic complex times necessary to equalize the 
corresponding temperature differences in (20). The left-hand side of this equation is 
proportional to the heat flux from the gas to the interface ; this flux provides the heat 
consumed by the phase transition (the second term on the right) and is required to 
change the temperature of the particles (the first term on the right). 

A comparison of the characteristic times 7Tc, 7& and T, appearing in (20) shows 
that differences between them are usually large, and the following estimates hold: 

Here L is the mean free path of molecules in the gas. S s  a rule A, 9 A, and, regardless 
of frequency (taking into account the inequality JqZJ < Irll), we have 17,*,J/17Tff] 4 1.  
The ratio 7,/17:,’,1 can be small only within certain ranges of particle sizes and 
frequencies, depending upon the physical properties of the particles. Thus, for a 
water mixture of saturated vapour with droplets at p = 1.0 MPa, when h,/A, x 20, 
l /C: x 8, L - lo-’ m, we have 

7, 10’ L m - m ( d  
If the typical droplet size is a - m, then 7, for this mixture is much less than 
 IT&^ only if (rzj - 1 ,  i.e. if the ‘internal’ heat transfer proceeds under quasi-stationary 
conditions (w 4 7;;). 
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The heat inflow equation ( Z O ) ,  taken together with estimates (2 l ) ,  leads to the 
conclusion that the temperature non-uniformity within droplets (T, + T,) is small 
compared with that in the gas phase (deviations of Tl from T,). A non-equilibrium at 
the interfaces (deviation T, from T,) can be observed only at high acoustic frequencies 
and small sizes of droplets, as in these cases Ir&l becomes small and tends to 7, 

because of small values of lr21 or a.  The following estimates for characteristic 
temperature differences in vapour-droplet mixtures are typical : 

IT,-T,I < IT,-T,I < ITl-T,I. 

If no phase transition occurs, the equation of heat inflow to the particle surface takes 
the form 

Tl-T, T,-T, 
ql,+q,, = 0 or T + I , =  0. 

71, 7 2 ,  

This equation enables us to eliminate T, from the equation (2) for heat influx to the 
particles and rewrite it in the form 

Here ry, is the ordinary ' quasi-stationary ' time of temperature relaxation between 
phases, and 7% is its complex analogue. In  this approximate expression for 7; we 
have taken into account the first estimate of (21), which implies that  for A, % A, and 
for no phase transformations a t  the droplet surface the non-stationary character of 
the ' internal ' heat transfer is unimportant, regardless of frequency. 

3. Dispersion and absorption of perturbations in vapour-droplet and 
gas-particle mixtures 

The system of linear equations (1)-(3), ( l l ) ,  (15), (17) and (19) is closed. It can be 
used over a wide range of frequencies to  analyse the propagation of small 
perturbations in mixtures of vapour or gas with liquid or solid particles, both with 
or without phase transitions on interfaces. We now proceed to solve the system and 
to analyse its travelling-wave solutions (4). For convenience the following 
dimensionless parameters characterizing the composition of the mixture and the 
physical properties of the individual phases will be used : 

Here m is the relative mass concentration of droplets (particles) in the mixture, r is 
the gas-to-droplet density ratio (at moderately high pressures r < 1) and R, is the gas 
constant. 
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3.1. Dispersion equations 

The dispersion equation connecting wavenumber IC, and perturbation frequency w 
can be derived from the condition of the existence of a non-zero solution of the type 
(4) for the system of linear equations considered. It has the following form: 

w1 - w, f71+ (71 - 1) 1 7 2  

W3 + mW, ' n3+mnz  ' 
V ( w )  = l + m  O ( W )  = 1 +nz 

wl = (1 - -aZ) (1- r ) ,  wz = r[1-r(iw,*)], w3 = i-iiw~,*, 

l - r  

l 2  
n, = -{ ( 1  - r )  (C, +mi&,) -21-m°C2(iw7f,) 

n, = 1-(iw7& (1 + $) 3 

Here V ( w )  and O(w) are complex functions depending upon the volume concentration 
az of the condensed phase, particle size a ,  and thermophysical properties of the 
phases ( y l ,  C,, 1, /3,p1,p;, cj, h, ; j  = 1,2).  These functions describe dispersive and 
dissipative effects due to the relative slip of phases and the non-equilibrium 
interfacial heat and mass transfer respectively. If no droplets or particles are 
suspended (m = 0 ) ,  these effects vanish, and I' = 0 = 1. 

According to the estimates (21), 17,*,1/17;",1 4 1 regardless of frequency, so that the 
terms for 17, and 113 containing this ratio can be, as a rule, neglected. The effect of 
non-equilibrium phase transitions becomes appreciable when the ratio 7J7:,, which 
increases with increasing frequency w ,  becomes comparable with unity (7&2*,1 - 1 ) .  

Note that (24) is justifiable if a, $ 1. At r < 1 and m - 1 the function V ( w )  and 
the term 17,(w)  in the function O ( w )  are close to the functions V 0 ( w )  and q ( w )  
respectively ( V ( w )  = Vo(w) (1 + e V ( w )  O(a2)) ,  n 1 ( w )  = q ( w )  (1 +e,(w) O(a,)), where 
le,(w)l d 1,  le,(w)l < 1 regardless of frequency). Here 

An expression for V(w) in the form (25) can be obtained from the governing 
equations directly if the buoyancy and virtual mass forces are negligible. Thus, 
although the absolute values of these forces are comparable with Stokes and Basset 
forces a t  high frequencies (see (9)), their contributions to dispersion and absorption 
of sound are small because of a phase shift between oscillations of the force and those 
of the velocity. 

The dispersion equation describing the propagation of small perturbations in 
gas-particle mixtures in the absence of phase transformations (e.g. in a gas with 
suspended solid particles) can be derived from (24) by a limit transition 7, + co . In  
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this case the function V ( w )  remains the same, while O(w) transforms to the following 
simple form : 

I yl( 1 + m) cv/cl - iw7: 
ye( 1 + m) cy/cl - iw7: ' 

@ ( w )  = 

ye = -. c1 - R, + mc, c1 + mc, 
C" = , c p = -  

l + m  l + m  ' 

Here c y  and cp  are the equilibrium specific heats a t  constant volume and pressure 
respectively, and ye is the equilibrium adiabatic exponent of a two-phase mixture 
without phase transformations. In  writing (26), we used the complex relaxation time 
of temperature between phases 7; discussed earlier (see ( 2 2 ) ) .  The dispersion 
equations (24), (26) a t  sufficiently low frequencies w < 10-'7;; are simpler (see 
Ivandaev 1978). 

3.2. Equilibrium and frozen speeds of sound 

The expressions for the equilibrium C, and frozen C, speeds of sound in a 
vapour-droplet mixture, derived from the dispersion equation (24) with V ( w )  and 
Ill(w) from (25), by limit transitions w + O  and w +  GO, can be written in the form 

Here ye is an analogue of the equilibrium adiabatic exponent for a two-phase mixture 
with phase transformations. I n  the particular case of no condensed phase (m = 0) the 
exponent ye = yel determines the speed of sound in vapour C,,, called the equilibrium 
speed of sound on the boundary of the two-phase region (the speed that could exist 
if the vapour temperature Tl in the wave were equal to the saturation temperature 
Ts Vl = TAP)) 

2 

The formulae for the equilibrium and frozen speeds of sound in gas-solid particle 
mixtures without phase transitions can be obtained by letting w + 0 and w + GO in the 
dispersion equation (24), with V(w)  obtained from (25)  and O ( w )  from (26). They have 
the same form as (27), but with ye obtained from (26). 

C,) a t  
high (w 5> 7;', 7;'), but nevertheless admissible for the continuum theory, frequencies 

Note that the frozen speed of sound C, can in practice be achieved (C,(w)  

(w 4 w c ) .  

3.3. Analysis of sound speed and attenuation coeficient dependence upon frequency 
It would hardly be meaningful to give here the explicit formulae describing the 
dependences of the phase C, and group C, speeds and the linear k , ,  and dimensionless 
u attenuation coefficients upon frequency w and thermodynamic parameters of the 
mixture : they are very unwieldy. The dependences can be analysed by examining the 
results of direct calculations. The calculations, partly illustrated below, were carried 
out for a monodisperse vapour-water mixture of droplet structure (a, < 0.05), a t  
initial pressure p = 1.0 MPa. The range of frequency where the condition of acoustic 
homogeneity is valid (L,,, N Ic-l + a )  was considered. 
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F~QURE 4. Dimensionless phase velocity C,/C, of weak harmonic perturbations propagating 
through a saturated mixture of water vapour and droplets at a pressure p = 1 .O MPa, as a function 
of dimensionless frequency WT,. Pu'umbers marking different series of curves show the relative mass 
concentration m of droplets in the mixture. Each curve within a series corresponds t o  a particular 
value of the accommodation coefficient p. 
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FIGITRE 5.  Dimensionless group velocity c,/c, of weak harmonic perturbations propagating in a 
mixture of water vapour and droplets at a pressure p = 1.0 MPa, as a function of dimensionless 
frequency WT,. For description of curves, see figure 4. 

Selected results of the calculations are plotted in figures 4-7. Each series of curves 
in the figures corresponds to a definite mass Concentration of the condensed phase. 
Each curve within a series corresponds to  a definite value of the accommodation 
coefficient /3. Solid curves correspond to /3 = 0.04, sometimes recommended for water 
(note that for p = 1.0 MPa (5" = T,(p)) ,  for a = 30 pm, and for /3 = 0.04 we have 
r,/r, = 6 x 10P); the other curves illustrate the effect of p upon dispersion and 
attenuation of perturbations. The case /3 = 0 is that of frozen mass transfer (7, = C O )  
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FIGURE 6. Linear attenuation coefficient k,, of weak harmonic perturbations propagating through 
a mixture of water vapour and droplets at a pressure p = 1 .O MPa, as a function of dimensionless 
frequency 07,. For description of curves, see figure 4. 
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FIGURE 7 .  Dimensionless attenuation coefficient per wavelength CT as a function of dimensionless 
frequency 07, €or weak harmonic perturbation in a saturated mixture of water vapour and droplets 
( p  = 1.0 MPa). For description of curves, see figure 4. 

and the case denoted by /3 = co is that  of quasi-equilibrium mass transfer at T, = T, 
(7, = 0). The curves corresponding to finite values of /3 lie within a region bounded 
by the limiting curves /3 = 0 and /3 = 00, and tend to them at high and low 
frequencies, respectively. 

The solid curves (/3 = 0.04) almost coincide with the dashed curves (/3 = co) when 
7, < IT,*,I (see the discussion of (21)), that  is up to frequencies wA2 5 10 at which 
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FIGURE 8. The contributions of individual non-stationary effects to dispersion and dissipation of 
sinall perturbations in a water vapour-droplet mixture at a pressure p = 1.0 MPa (mo = pi/py = 
172). Curve I ,  all non-stationary effects are taken into acrount; 2, only non-stationary effects of 
interfacial momentum transfer are taken into account ; 3, only thermal non-stationary effects are 
taken into account ; 4, non-stationary effects are neglected. The mass concentration of droplets in 
the mixture is m = 1. 

lrzl - 1, i.e. up to W T ,  5 10. If we use the assumption of quasi-equilibrium mass 
transfer (/3 = co) a t  high frequencies, we reduce the phase velocity of small 
perturbations and enhance their linear attenuation coefficient. If the assumption of 
frozen mass transfer is used, the velocities are enhanced and the linear attenuation 
coefficient is diminished, while the attenuation coefficient per wavelength (T becomes 
bigger a t  low, and smaller a t  high, frequencies. The group velocity curves C,(w) tend 
to form local maxima and minima a t  certain frequencies which depend upon the 
droplet content in the mixture. 

To take into account the non-stationary effects of interfacial interaction under 
high-frequency perturbations, we have to take into account the deviations of T:, 

and T $ ~  from T,, $-7nl and %A2 rcspectively. The deviations occur as the boundary 
layers in and around droplets become thinner than those predicted by the quasi- 
stationary theory. Because of thin boundary layers the interfacial transfer processes 
proceed faster, are more in 'equilibrium' than within the framework of quasi- 
stationary correlations, and are shifted in phase with respect to the corresponding 
thermodynamic forces. As a result, owing to non-stationary effects the speed of weak 
perturbations decreases, while the linear attenuation coefficient increases. 

Let us emphasize the following interesting observation. If we neglect non- 
stationary effects, the theory yields group velocities C,(w) that may exceed the frozen 
speed of sound in the mixture, G,. Further, the linear attenuation coefficient 
k,,(w) +- const as w + co. If non-stationary effects are taken into account, C,(w) < C, 
for the calculated cases, and Ic,,+co like the square root of w as w + m .  The 
principal term of the asymptotic expression for k , , (w) ,  whose residual term is 
bounded, takes, as w +  00, the form 
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The contribution of each individual non-stationary component of interfacial 
momentum and heat transfer, and its effect on the dispersion curves, is shown in 
figure 8. It is clear that  the main non-stationary effects are the effects of interfacial 
drag (i.e. the effect of the Basset force, see the discussion of ( 2 5 ) ) .  They become 
appreciably different from zero at wrP1 = i (py/p:) WT, > lop2, in complete agreement 
with (9). Thermal non-stationary effects are much weaker, and become perceptible 
a t  substantially higher frequencies. 

The quantities w and a enter complcx functions V ( w )  and O(w) ,  which define 
lc,/w, only as dimensionless combinations wrP1, wrA1, wrA2 and WT,. They characterize 
the ratios of various relaxation times ( T ~ , ,  7A1, rA2 - a 2 ;  7, - a )  to the period of 
oscillations w-'. Let us fix the properties of the phases (y,, C,, 1, p,", c I ;  j = 1 , 2 )  and 
single out two limiting cases : one of no phase transitions (7, = 00) and one of quasi- 
equilibrium at the interface (7, = 0). In both of these cases the combination 07, does 
not enter the dispersion relation, while all the other dimensionless combinations 
differ only by constant factors. This means that in these 7,-limiting cases the 
dispersion relation IcJw = f ( w ,  a )  is a function of a single complex wa2, i.e. of a single 
dimensionless parameter. We can take as such a parameter, for instance, w = wrV,  
which is the most significant for a gas-particle mixture. Hence, for WT, + 1 or 
WT, 4 1, we have 

In other words, when phase transitions are frozen (p  = 0) or when they are quasi- 
equilibrium (p = 00). the curves Cp,,(W) and g(6) (dashed and dash-dotted curves 
in figures 4-7) arc valid for arbitrary particle sizes within the admissible range 
(w  < oc). Non-self-similarity of CP,Ja) and ~ ( w ) ,  i.e. an additional effect of particle 
size on these functions, manifests itself only under phase transitions, when there 
is no temperature equilibrium on interfaces and the difference between T, and 
saturation temperature T, is appreciable. Such a situation occurs when T,,/lr,*,1 - 1.  

4. Conclusion 
The dispersion equations derived in the paper allow us to calculate not only the 

dynamics of monochromatic waves, but of an arbitrary perturbation, by considering 
it as a superposition of monochromatic waves and using Fourier transformation. 

At low mass concentrations of thc dispersed phase (m < l ) ,  generalization of the 
dispersion equations for a polydisperse mixture can be found easily. Essentially, in 
this case, the contribution of each fraction of the particles to the dispersion and 
absorption of sound is proportional to its mass concentration. 

The results of the reported analysis of momentum, heat and mass transfer 
processes between the phases of a vapour-droplet mixture in an acoustic field allow 
us to indicate typical frequency ranges over which some approximate schemes or 
theories are valid. If WT, 4 1 we can use the simplest one-velocity scheme. Two- 
velocity effects have to be taken into account if WT, 2 1. If, besides, (wrP1); < 1, i.e. 
W T , , ~  5 lo-', then interfacial momentum transfer is quasi-stationary, and the 
resistance force is the Stokes drag. At higher frequencies, non-stationary effects of 
the interfacial interaction take place, intensity of interfacial momentum transfer 
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increases and a certain phase shift between the interfacial force and the slip velocity 
can bc observed. These effects must be taken into account for ( ~ 7 , ~ ~ ) ;  2 0.1. An 
equilibrium one-temperature scheme can be used if ~7~ 4 1 .  Thermal non- 
equilibrium effects (Tl =k T,) must be taken into account if 2 1 .  In  this 
non-equilibrium case, a t  not very high frequencies ( ( ~ 7 ~ ~ ) ;  6 1 or w7Al 5 lo-’) the 
simpler quasi-stationary scheme of heat transfer in the gas phase (Nu, = 2 , y ,  = 0) 
can be employed. As a rule w7,,, < 1 if ~7~~ 5 hence the quasi-stationary scheme 
of heat transfer in the droplet phase ( N u ,  = lO,y, = 0) is valid in the same range 
of w .  

Non-stationary effects of interfacial heat transfer resulting in enhanced parameters 
Nuj  and phase shifts q~~ between qjn and T-T, must be taken into account when 
( ~ 7 ~ ~ ) i  > 0.1 and ~7~~ > 1.  Typically 7A2 9 7A1, because K~ 6 K ~ .  In  spite of this the 
upper limit of frequencies at which the quasi-stationary scheme of interfacial heat 
transfer can be used is frequently imposed by the gas-phase properties (see figure 3). 

The following four frequency ranges can thus be singled out : 

(1) 0 d w 4 (7;*,7Gl), 

1 1  

(111) 

(IV) 

7 i j  5 wt 5 ( 7 3 , 7 3 ,  

7;; < w 4 wc.  

The equilibrium theory is valid for range I ; the non-equilibrium theory employing 
the approximation of quasi-stationary interfacial transfer can be used for range 11, 
the non-equilibrium theory taking into account non-stationary effects of interfacial 
momentum and heat transfer in the gas phase for range 111, and the general non- 
equilibrium theory taking into account the non-stationary effects of heat transfer 
within the particles of the dispersed phase for range IV. 
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